Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin.

نویسندگان

  • Jinyou Zhuang
  • Jennifer H Amoroso
  • Ryan Kinloch
  • John H Dawson
  • Michael J Baldwin
  • Brian R Gibney
چکیده

The substitution of 1-methyl-l-histidine for the histidine heme ligands in a de novo designed four-alpha-helix bundle scaffold results in conversion of a six-coordinate cytochrome maquette into a self-assembled five-coordinate mono-(1-methyl-histidine)-ligated heme as an initial maquette for the dioxygen carrier protein myoglobin. UV-vis, magnetic circular dichroism, and resonance Raman spectroscopies demonstrate the presence of five-coordinate mono-(1-methyl-histidine) ligated ferrous heme spectroscopically similar to deoxymyoglobin. Thermodynamic analysis of the ferric and ferrous heme dissociation constants indicates greater destabilization of the ferric state than the ferrous state. The ferrous heme protein reacts with carbon monoxide to form a (1-methyl-histidine)-Fe(II)(heme)-CO complex; however, reaction with dioxygen leads to autoxidation and ferric heme dissociation. These results indicate that negative protein design can be used to generate a five-coordinate heme within a maquette scaffold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins.

Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaf...

متن کامل

Nuclear magnetic resonance shifts in paramagnetic metalloporphyrins and metalloproteins.

We report the first detailed investigation of the (1)H, (13)C, (15)N, and (19)F nuclear magnetic resonance (NMR) spectroscopic shifts in paramagnetic metalloprotein and metalloporphyrin systems. The >3500 ppm range in experimentally observed hyperfine shifts can be well predicted by using density functional theory (DFT) methods. Using spin-unrestricted methods together with large, locally dense...

متن کامل

Mössbauer quadrupole splittings and electronic structure in heme proteins and model systems: a density functional theory investigation.

We report the results of a series of density functional theory (DFT) calculations aimed at predicting the (57)Fe Mössbauer electric field gradient (EFG) tensors (quadrupole splittings and asymmetry parameters) and their orientations in S = 0, (1)/(2), 1, (3)/(2), 2, and (5)/(2) metalloproteins and/or model systems. Excellent results were found by using a Wachter's all electron basis set for iro...

متن کامل

Resonance Raman and EPR of nitrosyl human hemoglobin and chains, carp hemoglobin, and model compounds. Implications for the nitrosyl heme coordination state.

We report the joint resonance Raman (RR) and electron paramagnetic resonance (epr) study of five- and six-coordinate nitrosyl heme model compounds and of the titled nitrosyl hemoproteins. Both epr and RR spectra fall into two types which, in the models, correspond to five- and six-coordinate nitrosyl hemes. However, neither RR nor epr spectroscopy is highly sensitive to the nature of the bond b...

متن کامل

The binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands

The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 43 26  شماره 

صفحات  -

تاریخ انتشار 2004